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ABSTRACT

A semi-empirical model was developed for predicting the afterburning ignition
location of film cooled rocket engines. The model is based on two characteristic
distances, the distance required for turbulent mixing to generate a combustible mixture
with the reactive film layer and the distance traveled during the ignition delay. The
mixing length is affected by the mass flow, composition of the film cooling layer and the
fuel-rich air to fuel ratio required to support combustion. The ignition delay is determined
by the composition directly through the auto-ignition reaction time. Both distances are
affected by the velocity and temperature of the rocket core and air. This model was
experimentally verified over a range of co-flow air velocities using a liquid rocket engine
of approximately 440 N thrust, varying amounts of reactive film cooling and
compositions of film coolant, and a co-axial annular airflow generator producing airflow
at velocities up to nearly 200 m/s. Mean ignition locations experimentally observed were
between 3.8 and 9.8 centimeters from the nozzle lip and varied due to the airstream
velocity, and film coolant composition and mass flow. All model predictions were within

the standard deviation of the experimentally observed ignition points.
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EXECUTIVE SUMMARY

A semi-empircal model for prediction of rocket exhaust plume afterburning
ignition locations was developed and verified. Rocket exhaust plume afterburning is a
combustion process taking place outside of the rocket engine nozzle and is fueled by both
the exhaust core flow, which contains a significant percentage of unburned fuel products,
and the film cooling layer, a layer of nearly pure fuel products used to provide a
protective thermal barrier for the combustion chamber and nozzle walls. Behind the
rocket engine nozzle exit plane, turbulent mixing layers combine air with the fuel-rich
rocket exhaust plume to generate a combustible mixture that ignites due to hot rocket
exhaust core gases, resulting in afterburning. The semi-empirical model was verified
using a laboratory scale kerosene-oxygen rocket engine of about 400 Newtons thrust with
an annular co-flow of air at speeds up to nearly 200 meters per second. Mean observed
ignition offsets from the nozzle lip were between 3.8 and 9.8 centimeters, depending on
airstream velocity and chemical composition of the film coolant. For all observed
conditions, the model predictions were within the standard deviation of the mean
observed ignition locations. The semi-empirical model and experimental results indicate
that for the small engine used, the offset due to the distance traveled during the

autoignition process was 47-89 percent of the overall ignition offset from the nozzle lip.
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l. INTRODUCTION

A. MOTIVATION

Understanding and accurate characterization of the physics and chemistry that
give rise to thermal emissions from rocket exhaust plumes continues to be of interest to
multiple government and private agencies. Afterburning processes can be a significant
component of some rocket engine exhaust plume signatures. One particular area in need
of better characterization is the afterburning ignition location. Currently, the methods of
predicting the mixing and reaction of chemical species in the shear layer and the resultant
combustion are limited, due to existing mixing models and computational power. The
purpose of this research was to improve understanding of the mixing and ignition
processes leading to afterburning in film-cooled liquid rocket engine exhaust plumes and
develop a model to predict the location of initial afterburning ignition based on
experimentally observed mixing rates and chemical timescales associated with practical
fuels. Potential applications of this work include missile detection and tracking, rocket

engine development, and even environmental monitoring.

Afterburning of rocket exhaust plumes occurs often due to the inherent presence
of unburned fuel and fuel products in the rocket exhaust. Optimal performance of a
rocket engine is defined in terms of the specific impulse or effective exhaust velocity.
The maximum exhaust velocity occurs when the ratio of total temperature to the
molecular weight of the exhaust products is maximized. For example, while a mixture of
8 parts oxygen to one part hydrogen, by mass, would lead to stoichiometric combustion
and maximum energy release, the primary combustion product is water, which has a
relatively high molecular mass, reducing the exhaust velocity. Therefore, most H,/O,
engines are run at between 4:1 and 6:1 mass ratios of oxygen and hydrogen, leading to a
large fraction of unburned hydrogen in the exhaust, which lowers the average molecular
mass of the mixture and increases the exhaust velocity. Rockets using hydrocarbon fuels
exhibit a similar behavior and are run fuel-rich to increase specific impulse. The
stoichiometric ratio for an RP1/Oxygen engine would be slightly over 3.0, but such

engines typically run in the range of 2.2-2.4 to improve performance [1]. The fuel-rich

1



exhaust condition is further exaggerated by the use of fuel as a film coolant for the
combustion chamber/nozzle walls. Fuel is used to form a cooler layer of fluid along the
wall of the combustion chamber to provide a thermal barrier, increasing combustion
chamber life at minimal weight. The fuel “film” flows down the chamber and nozzle
walls, possibly undergoing composition changes as the bulk temperature increases, and
forms a layer of nearly pure fuel products around the well-mixed core flow at the exhaust

plane.

The overall flowfield is shown schematically in Figure 1. At the nozzle exit, a
turbulent shear layer is formed between the rocket exhaust and the surrounding air. Air is
entrained into the shear layer along with products from the fuel film layer that makes up
the outer edges of the exhaust plume. As the distance downstream increases, air is
continually entrained, until a combustible mixture exists. Once a combustible mixture is
formed in the shear layer the ignition reaction sequence is initiated by the hot core gases.
Heat is released after a short ignition delay that may represent a significant downstream

distance due to the velocity of the mixture.

Required
Chamber/Nozzle Walls Mixing Length Ignition Delay

Air —*

High Velocity Exhaust
~ —Fuel-Rich Products

Fuel Film
Layer

Air Air Entrained -

Into Shear Layer
Combustible Mixture Afterburning
Formed Ignition

Figure 1. Schematic of Rocket Exhaust Flowfield



B. OBJECTIVES

The primary objective of this research was to develop a mathematical model to
allow analytical prediction of afterburning ignition locations. In developing this model, it
was necessary to evaluate and model the growth rate characteristics of an axisymetric,
reactive shear layer. In addition to directly predicting afterburning locations, this model
should provide a framework to allow simplified computational simulation of afterburning
liquid rocket engine exhaust plumes. A secondary objective was to determine the radial
location of afterburning ignition to evaluate whether the ignition mechanism was driven
by hot particulates such as soot, or combustible gases coming into contact with, and

mixing with very high temperature core exhaust products.
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II. THEORETICAL CONSIDERATIONS

A. OVERVIEW

A great deal of research has been performed on compressible shear layers, mixing
of heterogeneous shear layers, and even chemical reactions in shear layers.
Unfortunately, most have not been aimed at the type of shear layer found in rocket
exhaust plumes. There are three common compressible shear layer problems: the
supersonic combustion ramjet problem, the jet engine exhaust problem, and the rocket

engine exhaust plume problem.

The flowfield inside of a Supersonic Combustion RAMjet (SCRAMjet) involves
mixing a relatively slow moving fuel-rich stream with a supersonic air stream in as short
a distance as possible, so that combustion occurs within the engine. Much of the
SCRAMjet related work focuses on enhancing the mixing process without inducing large

pressure losses.

The noise emitted from jet engine exhaust is primarily generated by the
compressible shear layer between the exhaust and the ambient atmosphere. Reduction of
shear layer generated noise is the primary consideration. The flow of the jet is faster than
the surrounding air, and since gas turbine engines run fuel lean, the exhaust products have
generally fully reacted, and chemical reactions in the exhaust plume are of little

immediate importance.

The exhaust plume from a rocket engine is differentiated from the previous types
by several characteristics. The core of the rocket exhaust flowfield is fuel rich, and unlike
gas turbine engines, which burn fuel lean for efficiency, rocket engines burn fuel rich for
performance. The core is also often significantly faster and hotter than the surrounding
airflow. The velocity difference is largest early in the flight trajectory and anywhere
along a rocket flight path where mixing with air is a concern, the core will be faster than
the surrounding airflow. Given that rocket exhaust velocities are routinely between 2,500
m/s and 4,500 m/s, it is unlikely that the local airspeed of the rocket or missile will

exceed the jet velocity, at least while there is significant air present. This is not an



exhaustive representation of every rocket or missile, but does present representative
trends. Figure 2 depicts the flight path of a generic rocket, and it can be seen that at an
altitude of 30 km the airspeed is expected to be about 1,100 m/s. The altitude and
airspeed increase roughly linearly, so that by the time the flight velocity reaches 2,500

m/s, the rocket is effectively out of the atmosphere at 60 km altitude.
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Figure 2. Generic Rocket Flight Path: Altitude and Airspeed

Chamber pressures in excess of 50 atmospheres and combustion temperatures
around 3,000-3,500 K are common. Even the most heat resistant metals and composites
cannot tolerate this environment for long durations. In rocket engines, therefore, some
combination of several techniques is employed to maintain structural integrity. In some
cases, the nozzle, especially the nozzle throat, is manufactured from heat tolerant
materials, and allowed to ablate. This technique is used mainly in solid fuel rocket
motors. In liquid fuel engines, two methods of chamber and/or nozzle cooling are
common. First, fuel is circulated through the nozzle and chamber walls, to convect away
heat from the walls. Second, many rocket engines, employ film cooling, where relatively
low temperature fuel is sprayed down the walls of the chamber to provide thermal
protection to the chamber and nozzle walls. The presence of the fuel provides a thermal
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barrier, protecting the structure from direct exposure to the combustion gases. This results
in a mixture of unburned fuel and fuel components generated by chemical decomposition
due to the high temperature, forming a layer around the hot core exhaust. In some cases
around 10 percent, or more, of the total mass flow of the engine is in this film coolant
layer. Clearly, this significantly increases the fuel mass available to initiate and sustain
afterburning of the exhaust plume. An example of how the percentage of film coolant can
affect the visible plume emissions is shown in Figure 3, showing images of the laboratory
scale engine used in this research with kerosene film cooling percentages from 0 to 18

percent.

No Film Cooling

¢} 18% Film Cooling

i
t

Figure 3.  Comparison of Visible Plume for Levels of Kerosene Film Cooling
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A NASA image of a 750,000 Ib thrust hydrocarbon/oxygen fueled Evolved
Expendable Launch Vehicle (EELV) engine test is shown in Figure 4 [2]. The
afterburning appears to visually begin about 0.25-0.5 nozzle diameters back from the

nozzle lip.

Figure 4.  NASA EELYV Test-Firing: Showing Afterburning (From Ref. [2])

In spite of the differences in the details of these flows, the work on other
compressible shear layers can be used to some extent in analyzing the rocket exhaust
flows which are the subject of this research. The previously developed theory can be
viewed in terms of the general trends of shear layer growth and the mixing rates caused
by the growing shear layer. Analysis of mixing for compressible shear layers has
historically been based on incompressible shear layer growth analysis, corrected for the
additional effects of compressibility. This research will treat compressible shear layer
growth similarly. Additional considerations for axisymetric jets and finally the problem
of the three-stream, axisymetric shear layer will be developed.

B. SHEAR LAYER GROWTH

A basic shear layer consists of two plane flows with different velocities, U; and

U,, and densities p1 and p,, which are initially separated by a partition which ends at x =

0, where the flows meet and begin to act upon each other. The general regions are shown



in Figure 5. Downstream of the partition between the streams, the flow develops into a
region where the mean flow approaches similarity in terms of y/x. The profiles of
streamwise velocity and density take the similarity forms, as shown by Brown and
Roshko [3]:
U/U, = fn(nr,s) plp =1(nr,s)
where (1)
n=yl(x-x,) r=U,/U s=p,/p
The origin shift, X,, is included to correct for what are essentially the effects of a
wake behind the partition near x = 0. Due to these effects, the flow, in a strict sense, only
asymptotically approaches the similarity state at very large values of X, such that

X,/ x—0.
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Figure 5.  Shear Layer Schematic

Each shear flow described by the relationships defined in Equation 1 spreads
linearly, such that:

d—555’:—5 =C (2)
dx X=X,

where ¢ symbolizes any measure of the local thickness of the mixing layer. This may be
defined in a variety of ways depending on the diagnostics in use. For example, if a hot-

wire probe is used, 6 may be defined using the vorticity thickness, o, (see below) since
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the velocity gradient can be determined. However, a visual method, such as Schlierien or

shadowgraph images, would not allow this measurement, so a J,,, would be determined.

The constant, C, is a function of the velocity ratios and density ratios.
C=C(r,s)=c(ﬁ,&j (3)
U, n
Papamoschou and Roshko [4] proposed the following model for the mixing layer

growth rate, o, using the mixing layer visible on Schlieren photographs of the mixing

is !

layer as their mixing layer thickness.

w [l

Oy, =017——=0.17

vis,0 1/2
5
U, o
or (4)
1-r]{1+s"?
5\/'i50:0.17&:0.17[ ][ 7 ]
’ U, 1+r(s)

Since the mixing layer growth is related to the kinetic energy of the two streams,
the effect of density differences is less than that of velocity differences. Therefore the
density ratio, s, appears only as its square root. The velocity ratio, r, is always less than 1,
as the higher velocity stream is, by default, stream 1. This means that the value of the
density ratio, s, may be any positive value, and is not limited to values greater or less than

unity.

The relationship reflected in Equation 4 was derived using planar shear layer data.
Given that the shear layers of interest in this research are not planar, but axisymetric, a

modified form will be used:
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o) T
w5 (2)

or (5)
[1_ r1/2j||:1+ gl/2

112112
S

!
5vis,0

=0.17

!
5vis,0

=0.17
1+r

The proposed model incorporates similar features, but the change in the geometry
of the shear layer makes it reasonable to assume that the effects may be slightly different
with the velocity and density ratios having greater or lesser effects than in a planar shear
layer. Tennekes and Lumley [5] noted that the velocity of an axisymetric jet varies as the
inverse of the axial (downstream) distance, while the velocity of a planar jet varies with
the inverse of the square root of the axial position. The growth rate is related to the
dissipation in the core of the rocket exhaust jet. Therefore, if the velocity of the core in a
planar jet drops proportionally to x* and the growth rate is dependent on the velocity
ratio r', then for an axisymetric jet where the core velocity drops by x™, the growth rate

should be proportional to r*?

. The exponent applied to the velocity or velocity ratio is
simply reduced by % in all cases. If the density ratio, s, is held constant in Equations 4
and 5, the effect of changes in velocity ratio is much stronger and the mixing rates are
lower since as the mixing layer grows thicker, the momentum of the core is reduced
faster. The effects of the velocity ratio exponent on the shear layer growth rate are shown
in Figure 6. Nothing indicates that the effect of density is changed by the transformation

from planar to axisymetric jets, so the exponent remains 0.5.
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Figure 6.  Effect of Velocity Ratio Exponent on Predicted Shear Layer Growth Rates

Papamoschou and Roshko [4] have also shown that other measures of mixing
layer thickness may be proportionally related to this visual thickness, such that the

vorticity thickness, J,, may be taken to be 0.55,, and given several potential values

from 0.72 to 0.90, they assumed that the pitot thickness, ¢ . was 0.82 &, . These

ot s -
thicknesses were defined as follows: 6, is the width of the pitot (axial velocity) profile,
from 5% to 95% of the free-stream velocity differences, or, if a wake defect exists in the
shear layer as often happens near the splitter, the measurement is from 95% of the
velocity difference from the lower layer to the minimum velocity, to 95% of the velocity
difference from the upper layer to the minimum velocity. The vorticity thickness o, is
defined as:

U1 _Uz
RCULT™ v

This clearly results 